Exam. Code : 210401

Subject Code: 4821

M.Sc. Chemistry 1st Semester

SPECTROSCOPY A: TECHNIQUES FOR STRUCTURE ELUCIDATION OF ORGANIC COMPOUNDS

Course-IV

Time Allowed—Three Hours] [Maximum Marks—75

Note: — Candidates are to attempt FIVE questions,

ONE from each Section. Fifth question may be
attempted from any Section. All questions carry
equal marks.

SECTION—A

- 1. (a) Explain, why NMR spectrum of benzene is obtained at a lower field whereas that of acetylene at higher field strength?
 - (b) How many different type of protons are in allyl bromide? Explain.
 - (c) Discuss the significance of following:
 - (i) Nuclear magnetic double resonance
 - (ii) Karplus relationship. 6+3+6

2384(2119)/HH-13031

1

(Contd.)

- 2. (a) What are chemical shifts reagents? Discuss their importance.
 - (b) Discuss the following compounds in terms of spin system:

(i)
$$H \xrightarrow{CH_3} H$$
 $H \xrightarrow{Br}$

(ii) CH₃CH₂Br

(iii)
$$H_2C = C$$

(c) Out of given formulae identify the structural formulae for the compound that show only one signal in NMR spectra:

(d) List the differentiating features in the ¹HNMR of phenylacetate and methylbenzoate. 4+6+2+3

SECTION—B

- 3. (a) Explain the following with example:
 - (i) Nitrogen rule
 - (ii) Chemical ionization technique.

2384(2119)/HH-13031

2

(Contd.)

- (b) Comment upon salient features of the mass spectra of compound containing one chlorine and two bromine atoms.
- (c) How will you account for the appearance of prominent peaks at m/z 31, 42 and 70 in the mass spectrum of n-pentanol?
- (d) Explain, how 3-Methylcyclohexene and 4-Methylcyclohexene can be distinguished with the help of mass spectrometry?

 6+3+2+4
- 4. (a) Distinguish the following isomeric pair on the basis of mass spectrometry:
 - (i) 2-Pentanone and 3-Pentanone
 - (ii) 1-Butanol, 2-Butanol and 2-Methyl-2-Propanol.
- (b) Predict the fragmentation pattern of following compounds:
 - (i) Cyclohexanone
 - (ii) Nitrobenzene.
 - (c) Discuss giving one example Retro-diels alder reactions and its mass spectrum. 6+6+3

SECTION-C

- 5. (a) Define and explain the following terms:
 - (i) Molar extinction coefficient
 - (ii) Absorbance
 - (iii) Transmittance.
 - (b) Giving justification, arrange the following compounds in increasing order of λ_{max} :

III

- (c) Explain, why the bands obtained in ultra-violet spectra are broad as compared to infra-red spectra?
- (d) Taking the example of acetylacetone, discuss the characteristic peaks and various stretching and bending vibrations encountered in β-diketones.

3+6+2+4

- 6. (a) How will you distinguish the following pairs of compounds with the help of IR spectrum?
 - (i) CH₃CH₂OH and CH₃-O-CH₃
 - (ii) CH₃CH₂CHO and CH₃-CO-CH₃
 - (b) Giving suitable examples explain the effect of hydrogen bonding on wavelength of absorption in IR.
 - (c) Arrange the following non conjugated carbonyl compounds in order of increasing carbonyl stretching frequency, explain giving reasons: aldehydes, esters, amides, acyclic ketones, acid fluorides and acid chlorides.

 6+3+6

SECTION-D

7. (a) A cyclic ketone A on reaction with NaOCH₃ gives a product B. The spectral data of these compounds are given below:

Compound A; IR (cm⁻¹): 1720; ¹H-NMR (CDCl₃): δ 2.02 (4H, m), 2.60 (4H, m); ¹³C-NMR: 219.8, 39.2, 23.1; EI-MS: 84 (M⁺), 55.

Compound B; IR (cm⁻¹): 1740; ¹H-NMR (CDCl₃): δ 0.92-1.22 (7H, m), 2.20 (2H, t, J = 5.8), 3.60 (3H, s); ¹³C-NMR: 175.2, 51.9, 33.2, 27.1, 22.1, 13.7. EI-MS: 116 (M⁺⁻), 85, 74, 59, 57, 29.

Deduce the structure of compounds A and B.

(b) An organic compound with molecular formula $C_7H_{10}O_3N_2$ gave the following spectral data:

UV, λ_{max} : 216 nm (ϵ 80)

IR (v cm⁻¹) : 3534 (m), 2941-2857 (m),

2247 (m), 1745 (s), 1681 (s),

1634 (s) and 1460 (m)

¹HNMR (δ) : 6.77 (1H, bs), 5.53 (1H, d,

J = 6.7 Hz), 4.39 (2H, q, J = 7.2),

2.34 (3H, s), 1.38 (3H, t, J = 7.2)

Explaining all the spectral data, deduce the structure of the organic compound. 8+7

8. (a) When compound A is treated with a halogen containing compound B under basic conditions (ethanolic sodium hydroxide) forms yellow colored compound C. Compounds A, B and C gives the following spectral data:

Compound A: IR: 1720 cm⁻¹, ¹H-NMR: δ 2.14 (singlet), EI-MS: m/z 58 (M⁻⁺), 43 (base peak), 15.

Compound B: IR: 3024, 2852, 2751, 1705, 1601, 1444 cm⁻¹, ¹H-NMR: δ 9.82 (singlet, 1 H), 7.83 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 7.8 Hz, 2H), m/z: 140.00 (100.0%), 141.01 (7.7%), 142.00 (32.0%), EI-MS: m/z 142, 140, 139, 111.

Compound C: IR: 3076, 3033, 1676, 1610, 1599, 1422 cm⁻¹, ¹H-NMR: δ 7.82 (d, J = 17.2 Hz, 2H), 7.68 (d, J = 7.7 Hz, 4H), 7.42 (d, J = 7.7 Hz, 4H), 7.02 (d, J = 17.2 Hz, 2H), m/z: 302 (100.0%), 304 (63.9%), 306 (10.2%).

Explain all the spectral data and deduce the structure of these compounds.

(b) A compound C₆H₁₀O₂ shows a significant IR band at 1770 cm⁻¹, and three ¹HNMR signals at δ 4.2,
 2.5 and 1.0 with relative intensity 1 : 1 : 3 respectively. Deduce the structure of the compound.